基于MCL的多速率点云动作识别-学术咨询网
计算机工程与科学

计算机工程与科学杂志

  • 北大期刊
  • CSCD
  • 统计源期刊
  • 知网收录
  • 维普收录
  • 万方收录
基本信息
  • 主管单位:

    国防科技大学

  • 主办单位:

    国防科技大学计算机学院

  • 国际刊号:

    1007-130X

  • 国内刊号:

    43-1258/TP

  • 创刊时间:

    1973

  • 期刊类别:

    计算机期刊

  • 出版社:

    计算机工程与科学

  • 主编:

    王志英

  • 发行周期:

    月刊

出版信息
  • 审稿周期:

    1-3个月

  • 被引次数:

    19216

  • 邮发代号:

    42-153

  • 全年定价:

    ¥796.00

  • 他引率:

    0.9643

  • 邮编:

    410073

期刊详情 投稿咨询 关注公众号

基于MCL的多速率点云动作识别

作者:李涛,王松,谢甜,马亚彤
关键词:
摘要:针对体素数据会占用大量的内存空间且单网络可提取的动作信息有限的问题,提出了基于MCL的多速率点云动作识别模型。首先,优化了点云数据预处理方法,使点云数据的总体大
针对体素数据会占用大量的内存空间且单网络可提取的动作信息有限的问题,提出了基于MCL的多速率点云动作识别模型。首先,优化了点云数据预处理方法,使点云数据的总体大小减少1/2;其次,提出了基于MCL的多速率点云动作识别模型,以MCL框架为主体结构,引入置信度损失函数和广义蒸馏,通过置信度损失来确定知识蒸馏时的“教师”及“学生”网络;对“教师”网络进行广义蒸馏,对“学生”网络进行指导,实现了不同速率网络之间的信息融合。对该模型在公开的MMActvity数据集和Pantomime数据集上的性能表现进行了评估,分别得到91.3%和95.2%的准确率,实验结果验证了该模型的有效性。


To address the issues of voxel data occupying a large amount of memory space and limited action information that can be extracted by a single network, multiple choice learning (MCL) based multi-rate point cloud action recognition model is proposed. Firstly, the preprocessing method of point cloud data is optimized, reducing the overall size of the point cloud data by half. Secondly, an MCL-based multi-rate point cloud action recognition model is introduced, which takes the MCL framework as the main structure and incorporates confidence loss fuction and generalized distillation. The confidence loss is used to determine the “teacher” and “student” networks during knowledge distillation. The “teacher” network is subjected to generalized distillation to guide the “student” network, enabling information fusion between networks operating at different rates. This model was evaluated on the publicly available MMActvity dataset and Pantomime dataset, achieving accuracies of 91.3% and 95.2%, respectively. The experimental results validate the effectiveness of the proposed model.


相关文章
[1]周升儒, 陈志刚, 邓伊琴. 基于PoseC3D的网球动作识别及评价方法[J]. 计算机工程与科学, 2023, 45(01): 95-103.
[2]颜廷龙, 李瑛, 王凤芹. 基于MRF模型的飞机飞行动作识别划分算法[J]. 计算机工程与科学, 2022, 44(01): 159-164.
[3]王雪娇, 智敏. 基于可变形卷积神经网络的人体动作识别[J]. 计算机工程与科学, 2021, 43(01): 105-111.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社