融合模体感知和图Transformer编码的社区检测-学术咨询网
计算机工程与科学

计算机工程与科学杂志

  • 北大期刊
  • CSCD
  • 统计源期刊
  • 知网收录
  • 维普收录
  • 万方收录
基本信息
  • 主管单位:

    国防科技大学

  • 主办单位:

    国防科技大学计算机学院

  • 国际刊号:

    1007-130X

  • 国内刊号:

    43-1258/TP

  • 创刊时间:

    1973

  • 期刊类别:

    计算机期刊

  • 出版社:

    计算机工程与科学

  • 主编:

    王志英

  • 发行周期:

    月刊

出版信息
  • 审稿周期:

    1-3个月

  • 被引次数:

    19216

  • 邮发代号:

    42-153

  • 全年定价:

    ¥796.00

  • 他引率:

    0.9643

  • 邮编:

    410073

期刊详情 投稿咨询 关注公众号

融合模体感知和图Transformer编码的社区检测

作者:郭兴君,李晓红,史婉媱,高文超
关键词:
摘要:针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图
针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵。同时,使用混阶外切边编码获取原图的残留边信息,解决碎片问题,利用位置编码和内权边编码捕获重构图上的位置信息和边信息。其次,使用图Transformer提取原图携带的初始特征,再对编码所得的位置信息和边信息及初始特征进行融合,获得模体嵌入矩阵,实现社区检测。最后,在几个不同数据集上的实验结果表明,所提方法可以有效提高社区检测的性能,而且,对重叠社区检测和多社区公共顶点检测也是有效的。


The higher-order connectivity structure has been largely ignored,which contains a better signature of community compared with the lower-order connectivity structure,and the high-order information causes the inevitable fragmentation problem.To solve those problems,a motif-aware and graph Transformer(MGTrans) for community detection is proposed. Firstly, the maximal complete subgraph in the graph is searched and regarded as a motif,and the original graph is reconstructed with the motif as a unit to capture the motif adjacency matrix.At the same time,mixed-order outer-cut edges encoding is used to obtain the residual edge information of the original graph to solve the fragmentation problem,and position information and edge information on the reconstructed graph are captured through a position encoding matrix and motif short path with weight encoded.Then,the initial features are extracted by a graph transformer.Combing position encoding matrix,edge encoding matrix and initial features through the attention network to get motif embedding matrix for the community detection.Finally,The experimental results on several different datasets show the effectiveness of the MGTrans in improving the community detection performance of state-of-the-art methods and effectiveness for overlapping community detection and multi-community public node detection.


相关文章
[1]杨迪,刘琰,陈静,张伟丽. 基于模体的目标区域网络拓扑划分方法[J]. 计算机工程与科学, 2019, 41(03): 466-478.
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社