Arnold Mathematical Journal

Arnold Mathematical Journal Q0区

  • 期刊收录:
  • Scopus
阿诺德数学杂志
  • ISSN:

    2199-6792

  • 影响因子:

    0

  • 是否综述期刊:

  • 是否预警:

    不在预警名单内

  • 是否OA:

  • jcr分区:

    Q0区

  • 发刊时间:

    0

  • 发刊频率:

    4 issues per year

  • 中科院大类:

出版信息
  • 出版国家

  • 出版社:

    Springer Nature

  • 数据库:

    Scopus

  • 年发文量:

    -

  • 国人发稿量:

    -

  • 自引率:

    -

  • 平均录取率:-
  • 平均审稿周期:-
  • 版面费:-
  • 研究类文章占比0.00%
  • 被引用占比:-
  • 偏重研究方向:Mathematics-Mathematics (all)
杂志官网 投稿链接 关注公众号

期刊关键词

Scopus

期刊简介

The Arnold Mathematical Journal publishes interesting and understandable results in all areas of mathematics. The name of the journal is not only a dedication to the memory of Vladimir Arnold (1937 – 2010), one of the most influential mathematicians of the 20th century, but also a declaration that the journal should serve to maintain and promote the scientific style characteristic for Arnold's best mathematical works. Features of AMJ publications include: Popularity. The journal articles should be accessible to a very wide community of mathematicians. Not only formal definitions necessary for the understanding must be provided but also informal motivations even if the latter are well-known to the experts in the field. Interdisciplinary and multidisciplinary mathematics. AMJ publishes research expositions that connect different mathematical subjects. Connections that are useful in both ways are of particular importance. Multidisciplinary research (even if the disciplines all belong to pure mathematics) is generally hard to evaluate, for this reason, this kind of research is often under-represented in specialized mathematical journals. AMJ will try to compensate for this.Problems, objectives, work in progress. Most scholarly publications present results of a research project in their “final' form, in which all posed questions are answered. Some open questions and conjectures may be even mentioned, but the very process of mathematical discovery remains hidden. Following Arnold, publications in AMJ will try to unhide this process and made it public by encouraging the authors to include informal discussion of their motivation, possibly unsuccessful lines of attack, experimental data and close by research directions. AMJ publishes well-motivated research problems on a regular basis. Problems do not need to be original; an old problem with a new and exciting motivation is worth re-stating. Following Arnold's principle, a general formulation is less desirable than the simplest partial case that is still unknown.Being interesting. The most important requirement is that the article be interesting. It does not have to be limited by original research contributions of the author; however, the author's responsibility is to carefully acknowledge the authorship of all results. Neither does the article need to consist entirely of formal and rigorous arguments. It can contain parts, in which an informal author's understanding of the overall picture is presented; however, these parts must be clearly indicated.

阿诺德数学杂志发表有趣的和可以理解的结果,在所有领域的数学。杂志的名字不仅是为了纪念20世纪最有影响力的数学家之一弗拉基米尔·阿诺德(1937 - 2010),也是为了声明杂志应该保持和促进阿诺德最好的数学作品的科学风格。AMJ出版物的功能包括:人气。期刊文章应该是一个非常广泛的数学家社区。不仅必须提供理解所需的正式定义,而且还必须提供非正式动机,即使后者是本领域专家所熟知的。跨学科和多学科的数学。AMJ出版的研究博览会,连接不同的数学学科。在这两方面都有用的连接尤其重要。多学科的研究(即使这些学科都属于纯数学)通常很难评价,因此,这类研究在专门的数学期刊上往往代表不足。AMJ将努力弥补这一点。问题,目标,正在进行的工作。大多数学术出版物都以“最终”形式呈现研究项目的结果,其中所有提出的问题都得到了回答。一些开放的问题和猜想甚至可能会提到,但数学发现的过程仍然隐藏。继阿诺德之后,AMJ的出版物将试图揭示这一过程,并通过鼓励作者包括他们的动机、可能不成功的攻击路线、实验数据和研究方向的非正式讨论来公开这一过程。AMJ定期发布动机良好的研究问题。问题不需要原创;一个带有新的和令人兴奋的动机的老问题值得重述。根据阿诺德原理,一个普遍的公式不如一个最简单的部分情况,仍然是未知的。最重要的要求是文章要有趣。不受作者原创研究贡献的限制;然而,作者的责任是认真承认所有结果的作者身份。这篇文章也不需要完全由正式和严格的论点组成。它可以包含一些部分,在这些部分中,非正式的作者对整个画面的理解得以呈现;但必须明确指出这些部件。

《Arnold Mathematical Journal》期刊已被查看:

期刊官网投稿信息

分区信息

中科院分区()
  • 大类学科
  • 分区
  • 小类学科
  • 分区
  • Top期刊
  • 综述期刊
JCR分区、WOS分区等级:暂无
  • 版本
  • 按学科
  • 分区
  • WOS期刊SCI分(2022-2023年最新版)
  • 暂无
IF值(影响因子)趋势图
年发文量趋势图
自引率趋势图
Cite Score趋势图

常见问题

《Arnold Mathematical Journal》同类:期刊