CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS Q1区

  • 期刊收录:
  • SCIE
  • Scopus
变分法和偏微分方程杂志
  • ISSN:

    0944-2669

  • 影响因子:

    2.1

  • 是否综述期刊:

  • 是否预警:

    不在预警名单内

  • 是否OA:

  • jcr分区:

    Q1区

  • 发刊时间:

    1993

  • 发刊频率:

    Monthly

  • 中科院大类:

    数学

出版信息
  • 出版国家

    UNITED STATES

  • 出版社:

    Springer Berlin Heidelberg

  • 数据库:

    SCIE,Scopus

  • 年发文量:

    228

  • 国人发稿量:

    38.76

  • 自引率:

    -

  • 平均录取率:0
  • 平均审稿周期:较慢,6-12周
  • 版面费:US$2890
  • 研究类文章占比100.00%
  • 被引用占比:16.77%
  • 偏重研究方向:数学-数学
杂志官网 投稿链接 关注公众号

期刊关键词

SCIEScopusMATHEMATICSQ1数学2区

期刊简介

Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems- Variational problems in differential and complex geometry- Variational methods in global analysis and topology- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.

变分法和偏微分方程是经典的、非常活跃的、密切相关的数学领域,在微分几何和数学物理中有着重要的分支。近40年来,这一学科在世界范围内得到了蓬勃的发展,并仍在继续向更广阔的领域延伸。本杂志将吸引和收集这一研究领域的许多重要的高质量的贡献,并强调分析师、几何学家和物理学家之间的互动。变分法和偏微分方程的领域是广泛的;尽管如此,该杂志将开放给所有有趣的新发展。主题包括:-最小化问题的变分积分,存在性和正则性理论的最小化和临界点,几何测度理论-变分方法的偏微分方程,最佳质量运输,线性和非线性特征值问题-变分问题的微分和复几何-变分方法的整体分析和拓扑-动力学系统,辛几何,周期解的哈密顿系统-变分方法的数学物理,非线性弹性,渐近变分问题,均匀化,毛细现象,自由边界问题和相变-蒙日安培方程和其他完全非线性偏微分方程有关的问题,微分几何,复几何和物理。

《CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS》期刊已被查看:

期刊官网投稿信息

分区信息

中科院分区(2023年12月最新升级版)
  • 大类学科
  • 分区
  • 小类学科
  • 分区
  • Top期刊
  • 综述期刊
  • 数学
  • 2区
  • MATHEMATICS
    数学
  • 2区
JCR分区、WOS分区等级:Q1
  • 版本
  • 按学科
  • 分区
  • WOS期刊SCI分(2022-2023年最新版)
  • MATHEMATICS
  • Q1
IF值(影响因子)趋势图
年发文量趋势图
自引率趋势图
Cite Score趋势图

常见问题

《CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS》同类:数学期刊