0037-1912
0.7
否
不在预警名单内
否
Q3区
1970
Bimonthly
数学
GERMANY
Springer US
SCIE,Scopus
83
7.47
-
Semigroup Forum is a platform for speedy and efficient transmission of information on current research in semigroup theory.Scope: Algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, numerical semigroups, transformation semigroups, semigroups of operators, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, logic, etc.Languages: English (preferred), French, German, Russian.Survey Articles: Expository, such as a symposium lecture. Of any length. May include original work, but should present the nonspecialist with a reasonably elementary and self-contained account of the fundamental parts of the subject.Research Articles: Will be subject to the usual refereeing procedure.Research Announcements: Description, limited to eight pages, of new results, mostly without proofs, of full length papers appearing elsewhere. The announcement must be accompanied by a copy of the unabridged version.Short Notes: (Maximum 4 pages) Worthy of the readers' attention, such as new proofs, significant generalizations of known facts, comments on unsolved problems, historical remarks, etc.Research Problems: Unsolved research problems.Announcements: Of conferences, seminars, and symposia on Semigroup Theory.Abstracts and Bibliographical Items: Abstracts in English, limited to one page, of completed work are solicited.Listings of books, papers, and lecture notes previously published elsewhere and, above all, of new papers for which preprints are available are solicited from all authors.Abstracts for Reviewing Journals: Authors are invited to provide with their manuscript informally a one-page abstract of their contribution with key words and phrases and with subject matter classification. This material will be forwarded to Zentralblatt für Mathematik.
半群论坛是一个快速有效地传递当前半群理论研究信息的平台。范围:代数半群、拓扑半群、偏序半群、测度半群与半群上的调和分析、数值半群、变换半群、算子半群,以及半群理论在其他学科如环论、范畴论、自动机、逻辑等中的应用。语言:英语(首选),法语,德语,俄语。调查文章:解说词,如座谈会演讲。任何长度。可能包括原创作品,但应该向非专业人士提供一个合理的基本和独立的帐户的基本部分的主题。研究文章:将按照通常的裁判程序进行。研究公告:描述,限于八页,新的结果,大多没有证明,全长论文出现在其他地方。公告必须附有一份完整版本。简短说明:(最多4页)值得读者注意的,如新的证明、对已知事实的重大概括、对未解决问题的评论、历史评论等。研究问题:未解决的研究问题。关于半群理论的会议、研讨会和专题讨论会。2摘要和书目:征集已完成工作的英语摘要,限于一页。征集以前在其他地方发表过的书籍、论文和课堂讲稿的清单,最重要的是,征集所有作者的新论文的预印本。评论期刊的摘要:请作者随其手稿非正式地提供一页摘要,说明其贡献,其中包括关键词和短语以及主题分类。本材料将转发至数学中心。
《SEMIGROUP FORUM》期刊已被查看: 次
如果你是第一次发表SCI的话,我还是建议你啊,花钱找一个好的老师,一呢是让你尽快拿到一个结果,有一个好的开始啊,二是为了摸清套路,也对自己未来的科研路呢,能起到
JCR:Q3区--分类:数学
影响因子0.6
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.4
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.4
收录SCIE,Scopus
JCR:Q1区--分类:数学
影响因子2
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.9
收录SCIE,Scopus
JCR:Q3区--分类:数学
影响因子0.6
收录SCIE,Scopus
JCR:Q2区--分类:数学
影响因子1.8
收录SCIE,Scopus
JCR:Q1区--分类:数学
影响因子1.5
收录SCIE,Scopus