0218-348X
3.3
否
不在预警名单内
否
Q1区
1993
Quarterly
数学
SINGAPORE
World Scientific Publishing Co. Pte Ltd
SCIE,Scopus
465
223.2
-
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
在过去的几十年里,对涉及复杂几何、模式和尺度的现象的研究经历了引人注目的发展和应用。在这段相对较短的时间内,几何和/或时间尺度已经被证明代表了许多过程的共同方面,这些过程发生在非常不同的领域范围内,包括物理学、数学、生物学、化学、经济学、工程技术和人类行为。通常,现象的复杂性表现在其背后错综复杂的几何结构中,在大多数情况下,可以用非整数(分形)维的对象来描述。在其他情况下,事件的时间分布或各种其他量表现出特定的标度行为,从而提供了对决定给定过程的相关因素的更好理解。使用分形几何和标度作为相关理论、数值和实验研究的语言,有可能对以前难以解决的问题有更深入的了解。除其他外,通过应用标度不变性、自亲和性和多重分形等概念,对生长现象、湍流、迭代函数、胶体聚集、生物模式形成、股票市场和非均质材料有了更好的理解。我们致力于将这些领域的最新进展汇集在一起,以便在自然界和社会中复杂的空间和时间行为的各种方法和科学观点之间产生富有成效的互动。
《FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY》期刊已被查看: 次
如果你是第一次发表SCI的话,我还是建议你啊,花钱找一个好的老师,一呢是让你尽快拿到一个结果,有一个好的开始啊,二是为了摸清套路,也对自己未来的科研路呢,能起到
JCR:Q3区--分类:数学
影响因子0.6
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.4
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.4
收录SCIE,Scopus
JCR:Q1区--分类:数学
影响因子2
收录SCIE,Scopus
JCR:Q4区--分类:数学
影响因子0.9
收录SCIE,Scopus
JCR:Q3区--分类:数学
影响因子0.6
收录SCIE,Scopus
JCR:Q2区--分类:数学
影响因子1.8
收录SCIE,Scopus
JCR:Q1区--分类:数学
影响因子1.5
收录SCIE,Scopus