1687-1820
0
否
不在预警名单内
是
Q0区
2004
Quarterly
UNITED STATES
Springer International Publishing
Scopus,DOAJ开放期刊
-
-
-
In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering.The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics.In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.
在广泛的数学、计算、经济、建模和工程问题中,理论或真实的世界问题的解的存在等价于适当映射或算子的不动点的存在。因此,不动点在数学、科学和工程的许多领域都是至关重要的。理论本身是分析(纯分析和应用分析)、拓扑和几何的美丽混合体。在过去的60年左右的时间里,不动点理论已经被证明是研究非线性现象的一个非常有力和重要的工具。特别是,定点技术已经应用于诸如生物学、化学、物理学、工程学、博弈论和经济学等不同领域。因此有必要开发适当的算法来近似所请求的结果。这与不同科学和工程问题中出现的控制和优化问题密切相关。在非线性方程、变分法、偏微分方程、最优控制和反问题的研究中,许多情况都可以用不动点问题或最优化来表述。
《Fixed Point Theory and Applications》期刊已被查看: 次
如果你是第一次发表SCI的话,我还是建议你啊,花钱找一个好的老师,一呢是让你尽快拿到一个结果,有一个好的开始啊,二是为了摸清套路,也对自己未来的科研路呢,能起到
JCR:Q0区--分类:
影响因子0
收录Scopus,DOAJ开放期刊
JCR:Q0区--分类:
影响因子0
收录
JCR:Q0区--分类:
影响因子0
收录
JCR:Q0区--分类:
影响因子0
收录
JCR:Q0区--分类:
影响因子0
收录
JCR:Q0区--分类:
影响因子0
收录
JCR:Q0区--分类:
影响因子0
收录Scopus,DOAJ开放期刊
JCR:Q0区--分类:
影响因子0
收录