摘要: 随着自动驾驶技术的迅猛发展,车道线检测作为其关键组成部分,引起了广泛关注,并在智能交通系统中展现出巨大的应用潜力。然而,在应对复杂环境挑战时,传统车道线检测技术往往难以提供足够的识别精度。回顾车道线检测技术的发展轨迹,系统性地梳理了84种先进算法,并创新性地根据语义处理方式划分为四类别:语义分割辅助类、语义信息融合类、语义信息增强类和语义关系建模类。通过深入剖析算法的技术特点和优势,揭示了当前车道线检测技术所面临的主要局限。最后,对未来车道线检测技术的发展方向提出见解,特别是在语义信息利用方面,指出了潜在的研究方向。
关键词: 车道线检测, 语义信息, 自动驾驶, 深度学习, 计算机视觉
Abstract: With the rapid development of autonomous driving technology, lane line detection, as its key component, has attracted widespread attention and shown great potential for application in intelligent transportation systems. However, traditional lane line detection techniques usually struggle to provide satisfactory recognition accuracy when dealing with complex environmental challenges. This paper reviews the development of lane detection technology and systematically sorts out 84 advanced algorithms, and innovatively divides them into four categories based on semantic processing: semantic segmentation assistance, semantic information fusion, semantic information enhancement, and semantic relationship mode-
ling. By deeply analyzing the technical characteristics and advantages of these algorithms, the main limitations of current lane line detection technology are revealed. Finally, the future development direction of lane line detection technology is put forward, especially in the utilization of semantic information, and the potential research direction is pointed out.
期刊分类:计算机
1-3个月 北大期刊,CSCD期刊,.
影响因子0.68
期刊分类:计算机
1-3个月 统计源期刊
影响因子0.71
期刊分类:计算机
1-3个月 统计源期刊
影响因子0.65
期刊分类:计算机
1个月内 部级期刊
影响因子
期刊分类:计算机
1个月内 省级期刊
影响因子0.62
期刊分类:计算机
1个月内 省级期刊
影响因子0.33
期刊分类:计算机
1个月内 省级期刊
影响因子0.48
期刊分类:计算机
1个月内 省级期刊
影响因子0.6
期刊分类:计算机
1个月内 省级期刊
影响因子
期刊分类:计算机
1-3个月 CSCD期刊,SCI期刊
影响因子0.51